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Abstract

A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies.  Putative chimeras existed in 5% of environmental sequences and 0.5% of records derived from isolates. Environmental sequences were classified in 100 phylum-level lineages within archaea and bacteria.
Abstract
An online full-length small-subunit rRNA gene (SSU) database called “greengenes”, that keeps pace with public submissions of both archaeal and bacterial 16S SSU rDNA sequences, has been established at http://greengenes.lbl.gov. It addresses a number of limitations currently associated with SSU records in the public databases by providing automated chimera-screening, taxonomic placement of unclassified environmental sequences using multiple published taxonomies for each record, multiple standard alignments and uniform sequence-associated information curated from GenBank records. Manipulation of 72,918 SSU records revealed putative chimeras in 5% (1,901 of 38,412) of environmental sequences and, surprisingly, 0.5% (201/36,643) of records derived from isolates. Environmental sequences were classified in 78 bacterial phyla and 22 archaeal phylum-level lineages.  Greengenes also provides a suite of tools for manipulation of sequences including an aligner and has been streamlined to interface with the widely used ARB program.

Comparative analysis of 16S small sub-unit rRNA genes (hereafter abbreviated as 16S) is commonly applied to survey the constituents of microbial communities (4, 13, 24, 25), to infer bacterial and archaeal evolution (14, 19), and to design monitoring and analysis tools such as microarrays (5, 9, 17, 20, 30, 31). Because the production rate of 16S sequence records from uncultured organisms now exceeds that from their cultured counterparts, taxonomic placement of sequences lags behind.  In fact, 43% of full-length 16S records in GenBank are amalgamated into pseudo-divisions “environmental samples” or “unclassified”. Annotation styles are inconsistent creating barriers for computational categorization of biological sources.  Furthermore, since rRNA genes from environmental DNA are usually PCR amplified, it is suspected that many clandestine chimeric sequences are intercalated into the public databases.  From a small sample of 1,399 sequence records from known phyla, it was estimated that 3% of the public data might contain chimeras (2). The permeation of these poor quality data along with barriers in exchanging nomenclature have led to several conflicting taxonomies. The probability of mistakenly adopting a chimeric sequence in a phylogenetic inference or as a reference for probe/primer design is rising noticeably. Lastly, ARB (21) database administration needs to be streamlined for those who maintain 16S collections on their local computers.

Greengenes addresses these concerns by providing four features: a standardized set of descriptive fields, taxonomic assignment, chimera screening and ARB compatibility.  Heuristics are used to consider the author’s annotations and categorize each source as a named or unnamed isolate, an unnamed symbiont, or an uncultured organism.  Other standard descriptors include sequence quality measurements, authors, and a “study_id” that links all the records associated with a project.  Greengenes maintains a consistent multiple sequence alignment of both archaeal and bacterial 16S genes to facilitate taxonomic placement.  Taxonomy proposed by independent curators (NCBI, RDP (Bergey’s) (7), Wolfgang Ludwig (21), Phil Hugenholtz (16) and Norm Pace (24)) is tracked to promote user awareness of several estimations of phylogenetic descent allowing a balanced approach to node nomenclature when generating dendrograms. Comprehensive chimera assessment is a distinguishing characteristic of the greengenes data assembly process.  Each sequence is scored for chimeric potential, a break point is estimated and parent sequences are identified. Furthermore, since biologists often collect and visualize 16S relationships using the freely available ARB software, greengenes simplifies the chore of keeping a research groups private ARB database current by providing standardized alignments and an import filter (greengenes.ift) that imports the alignment and other standardized fields from 16S records vetted weekly from GenBank. 

To exemplify the utility of the greengenes data assembly process, and to interrogate the validity of prokaryotic candidate phyla, we aligned and chimera-checked over 72,000 public 16S sequences.  Taxonomic classifications were applied from the major curators where available.  Sequence data were imported from NCBI for complete or nearly complete gene sequences (>1250 nt in length) deposited as of September 21, 2005.  Alignment of both archaeal and bacterial sequences was performed with the NAST aligner (8) against templates selected from a phylogenetically broad collection (16).  The resulting multiple sequence alignment (MSA) was formatted so that each sequence occupies a consistent 7,682 characters or 4,182 characters, the later enabling compatibility with RDP v8.1(22) alignments.  Both these formats were concise enough for browsing in common MSA graphical interfaces such as ClustalX(29),  MEGA(18) and the platform independent Jalview(6) as well as ARB.  Other standard expansions such as the >20,000-character Ludwig alignment will be an alternate format available in future releases to give maximum flexibility to researchers. 

For high-throughput chimera screening of the aligned sequences, the program Bellerophon (15) was used with two modifications. First, the algorithm was modified to reduce the number of potential parents considered in the partial trees allowing run time to scale linearly rather than logarithmically with the count of candidate sequences in a collection.  Secondly, a new metric was implemented that weights the likelihood of a sequence being chimeric according to the similarity of the parent sequences. The more distantly related the parent sequences are to each other, the greater the likelihood that the inferred chimera is real. The metric, called the divergence ratio, uses the average sequence identity between the two fragments of the candidate and their corresponding parent sequences as the numerator, and the sequence identity between the parent sequences as the denominator.  All calculations were made using a 300 base pair window on either side of the most likely break point. A divergence ratio of 1.1 was empirically determined to be the threshold for classifying sequences as putatively chimeric.

Taxonomy was linked to each record by various methods.  NCBI and RDP taxonomic nomenclature were extracted directly from the respective Genbank-formatted records. The Pace and Ludwig annotations were exported from curated ARB databases. The Hugenholtz taxonomy was also derived from a curated ARB database in which tree topologies had been verified using RAxML-VI (28) for maximum likelihood inference. The general time reversible model of evolution (GTR) was applied together with optimization of substitution rates and site-specific rates according to a gamma distribution. Different search algorithms were considered depending on the run-time of the standard hill-climb (SHC) search method. If running in less than 8 hours, simulating annealing (SA) was processed with the default starting temperature and a termination time set to approximately 24 hours.  If SA was not used and SHC terminated within 24 hours, SHC was used. Further, the rapid hill-climb (RHC) was used in all other cases when its running time was less than 24 hours. The evolutionary diameter of the RHC search was specified explicitly when all taxa were closely related to improve the search. If RHC did not terminate within the set limit, the number of taxa was reduced.  After 100 bootstrap replications, a consensus tree was calculated using Concense (12) and imported into ARB. This database (greengenes.arb) is available for download through greengenes and is updated periodically.

Of the 72,000 NCBI records analyzed, 52% were derived from uncultured organisms, the majority of which have been deposited over the last five years (Figure 1).  Only two studies have submitted greater than one thousand full-length clones, however, we expect the number of large 16S surveys to rise due to the availability and falling cost of high throughput sequencing.  Bellerophon detection of putative chimeras in 5% of the 38,412 sequences from uncultured organisms was not unexpected considering initial estimates (2).  Surprisingly, 0.5% of sequences derived from pure cultures were also determined to be putative chimeras.  In addition, 2,573 full-length, 16S-annotated GenBank records only partially aligned with NAST, which suggests that an even greater abundance of poor quality data exist in the public repositories taken as a whole. Discovery of chimeras in 16S data collections is crucial if the data set will be a foundation for applied bioinformatics. They pose a fundamental problem when used as templates with probe selection software, a growing concern with the recent increase in 16S microarray probe development (3, 8, 11).  The 15 to 30 bases surrounding the chimeric break-point can appear sufficiently unique from all other records in a database causing a probe selection algorithm to justifiably identify this region as a target’s signature and suggest complementary probes to be synthesized.  These probes would appear highly valuable considering their minimal mis-hybridization potential, but, in fact, they would rarely be useful since they target non-existent organisms. Chimera test results from greengenes allow greater control over input to probe selection software, will aid in avoiding artificial T-RFLP pattern predictions from the ARB-compatible TRF-CUT (26) and can increase the accuracy of sampling rarefaction curves (27).

The fraction of putative chimeras within the deposited sequences from an individual study varies from none (10) to over 20% (23) (Figure 1) suggesting that chimera screening is still not being uniformly applied by researchers.  This was mainly found to occur in sparsely populated candidate phyla.  For instance, bacterial phyla ‘SPAM’, ‘SAM’, and ‘5’ and the class SA2 (Euryarchaeota) may require re-evaluation.  Likewise the genera Catabacter, Dyadobacter and Symbiobacterium are currently anchored by sequences with evidence of chimeric composition.  Additional sequences could lead to the empirical rejection of certain classifications or may aid in defining the true breadth of sequence variation for these taxa. 

Comparison of five different taxonomies uncovered a surprisingly large disparity between expert curators. Loosely interpreting “phyla” to be any labeled grouping or division immediately subordinate to the domains Archaea or Bacteria, the five curations were compared in a Venn diagram (Figure 2).  The main source of the disparity arises from discordant naming of novel candidate phyla, or absence of names for candidate phyla. For example Pace and Hugenholtz have independently named over a dozen phylum-level lineages many of which are the same lineages and RDP has not named any of these lineages. This is a consequence of the huge number of environmental sequences in the public databases and frequent redundant naming of environmental lineages in the literature. We hope that making multiple taxonomic classifications available through greengenes will aid in standardizing classification, particularly classification of environmental lineages.
Greengenes is also a functional workbench to assist in analysis of user-generated 16S sequences.   Batches of sequencing reads can be uploaded for quality-based trimming and creation of multiple sequence alignments.  Three types of similarity searches are available; seed extension by BLAST (1), similarity based on shared 7-mers by a tool entitled “Simrank”, or direct degenerative pattern match for probe/primer evaluation. Results are displayed using user-preferred taxonomic nomenclature and can be saved between sessions.

In summary, greengenes offers annotated, chimera-checked, full-length SSU 16S rRNA gene sequences in standard alignment formats.  The relational database links taxonomies from multiple curators and multiple sequences from a single study.  It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level.  Bellerophon found putative chimeras in sequences derived from both uncultured and isolated organisms.  The data set can be compared to user-provided sequences via web interface or can be imported directly into ARB for advanced analyses. We anticipate that greengenes will be valuable to researchers conducting environmental surveys and in SSU microarray design. 
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Figure 1.  16S rRNA gene sequencing projects producing at least 150 full-length records. All projects were submitted to Genbank between October 1999 and October 2005.  Sequences were generated from gastrointestinal (GI), soil (SO), vaginal (VG), aerosol (AR), culture collection (CC), insect (IN), water (WA), waste treatment (WT) or fecal (FC) sources as labeled on the x-axis and.  Projects are ordered by sequence count.
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Figure 2.  Phyla-level nomenclature shared among independent curators represented as a five-way Venn diagram.  Yellow spheres represent the 126 Phyla or Candidate Division names used in at least one of the five taxonomy systems (Pace, Hugenholtz, Ludwig, RDP, or NCBI).  Numbers in parentheses are the count of Phyla or Candidate Division names recognized by an individual curator.  Clusters of yellow spheres connected by more than one colored web are names used by multiple curators. Image rendered by AutoFocus software (Aduna B.V., The Netherlands). A complete table of phyla-level nomenclature comparisons is available at: http://greengenes.lbl.gov/Download/Taxonomic_Outlines/Comparing_Phyla_from_5_Curators_v9-14-05.html 
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